Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1549-1557, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621938

RESUMO

The dichloromethane fraction of Kadsura heteroclita roots was separated and purified by chromatographic techniques(e.g., silica gel, Sephadex LH-20, ODS, MCI column chromatography) and semi-preparative HPLC. Twenty compounds were isolated from K. heteroclita, and their structures were identified by NMR, MS, UV, and X-ray single crystal diffraction techniques. Twenty compounds were isolated from K. heteroclita, which were identified as xuetongdilactone G(1), mallomacrostin C(2), 3,4-seco(24Z)-cychmrt-4(28),24-diene-3,26-dioic acid 3-methyl ester(3), nigranoic acid(4), methyl ester schizanlactone E(5), schisandronic acid(6), heteroclic acid(7), wogonin(8),(2R,3R)-4'-O-methyldihydroquercetin(9), 15,16-bisnor-13-oxo-8(17),11E-labdadien-19-oic acid(10), stigmast-4-ene-6ß-ol-3-one(11), psoralen(12),(1R,2R,4R)-trihydroxy-p-menthane(13), homovanillyl alcohol(14), 2-(4-hydroxyphenyl)-ethanol(15), coniferaldehyde(16),(E)-7-(4-hydroxy-3-methoxyphenyl)-7-methylbut-8-en-9-one(17), acetovanillone(18), vanillic acid(19) and vanillin(20). Compound 1 is a new compound named xuetongdilactone G. Compounds 2-3 and 8-20 are isolated from K. heteroclita for the first time.


Assuntos
Kadsura , Kadsura/química , Espectroscopia de Ressonância Magnética , Raízes de Plantas/química , Ésteres/análise
2.
Int J Nanomedicine ; 19: 1923-1949, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435755

RESUMO

Exosomes, small extracellular vesicles derived from cells, are known to carry important bioactive molecules such as proteins, nucleic acids, and lipids. These bioactive components play crucial roles in cell signaling, immune response, and tumor metastasis, making exosomes potential diagnostic biomarkers for various diseases. However, current methods for detecting tumor exosomes face scientific challenges including low sensitivity, poor specificity, complicated procedures, and high costs. It is essential to surmount these obstacles to enhance the precision and dependability of diagnostics that rely on exosomes. Merging DNA signal amplification techniques with the signal boosting capabilities of nanomaterials presents an encouraging strategy to overcome these constraints and improve exosome detection. This article highlights the use of DNA signal amplification technology and nanomaterials' signal enhancement effect to improve the detection of exosomes. This review seeks to offer valuable perspectives for the enhancement of amplification methods applied in practical cancer diagnosis and prognosis by providing an overview of how these novel technologies are utilized in exosome-based diagnostic procedures.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/diagnóstico , Biomarcadores , DNA
3.
Adv Healthc Mater ; 13(5): e2302209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37897228

RESUMO

Thrombin, a coagulation-inducing protease, has long been used in the hemostatic field. During the past decades, many other therapeutic uses of thrombin have been developed. For instance, burn treatment, pseudoaneurysm therapy, wound management, and tumor vascular infarction (or tumor vasculature blockade therapy) can all utilize the unique and powerful function of thrombin. Based on their therapeutic effects, many thrombin-associated products have been certificated by the Food and Drug Administration, including bovine thrombin, human thrombin, recombinant thrombin, fibrin glue, etc. Besides, several thrombin-based drugs are currently undergoing clinical trials. In this article, the therapeutic uses of thrombin (from the initial hemostasis to the latest cancer therapy), the commercially available drugs associated with thrombin, and the pros and cons of thrombin-based therapeutics (e.g., adverse immune responses related to bovine thrombin, thromboinflammation, and vasculogenic "rebounds") are summarized. Further, the current challenges and possible future research directions of thrombin-incorporated biomaterials and therapies are discussed. It is hoped that this review may provide a valuable reference for researchers in this field and help them to design safer and more effective thrombin-based drugs for fighting against various intractable diseases.


Assuntos
Neoplasias , Trombose , Animais , Bovinos , Humanos , Trombina/efeitos adversos , Materiais Biocompatíveis/uso terapêutico , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico
4.
Talanta ; 269: 125460, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039667

RESUMO

Single cell heterogeneity plays an important role in many biological phenomena and distinguishing cells that exhibit certain mutation in sample could benefit clinical diagnose and drug screening. Typical single cell detection methods such as flow cytometry, in-situ hybridization, real-time amplification or sequencing test either protein or nucleic acid as target and usually require specialized instruments. Joint measurement of the both types of targets could be done by combining the above strategies precisely but also unwieldly. Methods for rapidly and parallelly screening single cells with target genotype and antigen is needed. In this study, we describe a gel plate platform to distinguish cell types based on their phenotypes on target gene and antigen with low equipment requirement. Integrated cell lysis and immobilization were done in the gel solidification step, after which antibody hybridization and real-time amplification were sequentially carried out without losing the original loci information of individual single cells so the three types of information of individual single cells could be combined to distinguished cells with expected genotype and phenotype. The easy-to-use gel platform has potential in point-of-care circumstances and single-cell stimulation response that have high requirements on efficiency and simplicity.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Genótipo , Ensaios de Triagem em Larga Escala
5.
J Mol Med (Berl) ; 102(2): 273-284, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38153509

RESUMO

EN1 encodes a homeodomain-containing transcription factor and is a determinant of bone density and fracture. Previous powerful genome-wide association studies (GWASs) have identified multiple single-nucleotide polymorphisms (SNPs) near EN1 at 2q14.2 locus for osteoporosis, but the causal SNPs and functional mechanisms underlying these associations are poorly understood. The target genes regulated by the transcription factor EN1 are also unclear. In this study, we identified rs188303909, a functional CpG-SNP, as a causal SNP for osteoporosis at 2q14.2 through the integration of functional and epigenomic analyses. Functional experiments demonstrated that unmethylated rs188303909 acted as a strong allele-specific distal enhancer to regulate EN1 expression by modifying the binding of transcription factor E2F6, but rs188303909 methylation attenuated the active effect of E2F6 on EN1 expression. Importantly, transcription factor EN1 could differentially bind osteoporosis GWAS lead SNPs rs4869739-T and rs4355801-G to upregulate CCDC170 and COLEC10 expression, thus promoting bone formation. Our study provided a mechanistic insight into expression regulation of the osteoporosis susceptibility gene EN1, which could be a potential therapeutic target for osteoporosis precision medicine. KEY MESSAGES: CpG-SNP rs188303909 is a causal SNP at the osteoporosis susceptibility locus 2q14.2. Rs188303909 distally regulates EN1 expression by modulating DNA methylation and E2F6 binding. EN1 upregulates CCDC170 and COLEC10 expression through osteoporosis GWAS lead SNPs rs4869739 and rs4355801.


Assuntos
Osteoporose , Polimorfismo de Nucleotídeo Único , Humanos , Estudo de Associação Genômica Ampla , Metilação de DNA , Osteoporose/genética , Fatores de Transcrição/genética , Predisposição Genética para Doença , Colectinas/genética , Fator de Transcrição E2F6/genética , Proteínas de Homeodomínio/genética
6.
New Phytol ; 239(3): 949-963, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37247338

RESUMO

Ascorbic acid (AsA) is a water-soluble antioxidant that plays important roles in plant development and human health. Understanding the regulatory mechanism underlying AsA biosynthesis is imperative to the development of high AsA plants. In this study, we reveal that the auxin response factor SlARF4 transcriptionally inhibits SlMYB99, which subsequently modulates AsA accumulation via transcriptional activation of AsA biosynthesis genes GPP, GLDH, and DHAR. The auxin-dependent transcriptional cascade of SlARF4-SlMYB99-GPP/GLDH/DHAR modulates AsA synthesis, while mitogen-activated protein kinase SlMAPK8 not only phosphorylates SlMYB99, but also activates its transcriptional activity. Both SlMYB99 and SlMYB11 proteins physically interact with each other, thereby synergistically regulating AsA biosynthesis by upregulating the expression of GPP, GLDH, and DHAR genes. Collectively, these results demonstrate that auxin and abscisic acid antagonistically regulate AsA biosynthesis during development and drought tolerance in tomato via the SlMAPK8-SlARF4-SlMYB99/11 module. These findings provide new insights into the mechanism underlying phytohormone regulation of AsA biosynthesis and provide a theoretical basis for the future development of high AsA plants via molecular breeding.


Assuntos
Ácido Abscísico , Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Ácidos Indolacéticos , Ácido Ascórbico , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Hortic Res ; 10(3): uhac286, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938568

RESUMO

The formation and development of pollen are among the most critical processes for reproduction and genetic diversity in the life cycle of flowering plants. The present study found that SlMYB72 was highly expressed in the pollen and tapetum of tomato flowers. Downregulation of SlMYB72 led to a decrease in the amounts of seeds due to abnormal pollen development compared with wild-type plants. Downregulation of SlMYB72 delayed tapetum degradation and inhibited autophagy in tomato anther. Overexpression of SlMYB72 led to abnormal pollen development and delayed tapetum degradation. Expression levels of some autophagy-related genes (ATGs) were decreased in SlMYB72 downregulated plants and increased in overexpression plants. SlMYB72 was directly bound to ACCAAC/ACCAAA motif of the SlATG7 promoter and activated its expression. Downregulation of SlATG7 inhibited the autophagy process and tapetum degradation, resulting in abnormal pollen development in tomatoes. These results indicated SlMYB72 affects the tapetum degradation and pollen development by transcriptional activation of SlATG7 and autophagy in tomato anther. The study expands the understanding of the regulation of autophagy by SlMYB72, uncovers the critical role that autophagy plays in pollen development, and provides potential candidate genes for the production of male-sterility in plants.

8.
Opt Express ; 31(3): 4029-4040, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785380

RESUMO

We demonstrate visualized microwire sensors based on fluorescence indication for detecting the concentrations of the aqueous solutions. The single Rhodamine (RhB) doped polymer microwires (PMWs) which are excited by the waveguiding excitation method are used as the sensory area. According to the fluorescent microimages of the PMWs, stable periodic oscillations could be observed in the RhB-doped PMWs. The fluorescent period which is dependent on the concentration is further analyzed by image processing and information extraction algorithms. Corresponding to a 1.0% change, the period length change of the visualized sensor reaches ∼380 nm, ∼270 nm, and ∼300 nm in NaCl, KCl, and sucrose solutions, respectively. The dection limits of the three solutions are estimated to be around 1.5 × 10-4%. The dye-doped PMW sensors by fluorescence indication and image analysis proposed here realize the direct visualized detection in concentration sensing, making it possible to avoid the challenges of stability and weak signal detection and offer a potentially stable and cost-effective approach for micro/nanofiber sensor application.

9.
Molecules ; 29(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202643

RESUMO

Norditerpenes are considered to be a common and widely studied class of bioactive compounds in plants, exhibiting a wide array of complex and diverse structural types and originating from various sources. Based on the number of carbons, norditerpenes can be categorized into C19, C18, C17, and C16 compounds. Up to now, 557 norditerpenes and their derivatives have been found in studies published between 2010 and 2023, distributed in 51 families and 132 species, with the largest number in Lamiaceae, Euphorbiaceae, and Cephalotaxaceae. These norditerpenes display versatile biological activities, including anti-tumor, anti-inflammatory, antimicrobial, and antioxidant properties, as well as inhibitory effects against HIV and α-glucosidase, and can be considered as an important source of treatment for a variety of diseases that had a high commercial value. This review provides a comprehensive summary of the plant sources, chemical structures, and biological activities of norditerpenes derived from natural sources, serving as a valuable reference for further research development and application in this field.


Assuntos
Diterpenos , Euphorbiaceae , Lamiaceae , Humanos , Antioxidantes/farmacologia , Carbono
10.
Cells ; 11(17)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36078168

RESUMO

Auxin, a plant hormone, regulates virtually every aspect of plant growth and development. Many current studies on auxin focus on the model plant Arabidopsis thaliana, or on field crops, such as rice and wheat. There are relatively few studies on what role auxin plays in various physiological processes of a range of horticultural plants. In this paper, recent studies on the role of auxin in horticultural plant growth, development, and stress response are reviewed to provide novel insights for horticultural researchers and cultivators to improve the quality and application of horticultural crops.


Assuntos
Arabidopsis , Oryza , Ácidos Indolacéticos , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas
11.
Plant Cell ; 34(11): 4409-4427, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36000899

RESUMO

Ascorbic acid (AsA) is a multifunctional phytonutrient that is essential for the human diet as well as plant development. While much is known about AsA biosynthesis in plants, how this process is regulated in tomato (Solanum lycopersicum) fruits remains unclear. Here, we found that auxin treatment inhibited AsA accumulation in the leaves and pericarps of tomato. The auxin response factor gene SlARF4 is induced by auxin to mediate auxin-induced inhibition of AsA accumulation. Specifically, SlARF4 transcriptionally inhibits the transcription factor gene SlMYB11, thereby modulating AsA accumulation by regulating the transcription of the AsA biosynthesis genes l-galactose-1-phosphate phosphatase, l-galactono-1,4-lactone dehydrogenase, and dehydroascorbate. By contrast, abscisic acid (ABA) treatment increased AsA accumulation in tomato under drought stress. ABA induced the expression of the mitogen-activated protein kinase gene SlMAPK8. We demonstrate that SlMAPK8 phosphorylates SlARF4 and inhibits its transcriptional activity, whereas SlMAPK8 phosphorylates SlMYB11 and activates its transcriptional activity. SlMAPK8 functions in ABA-induced AsA accumulation and drought stress tolerance. Moreover, ABA antagonizes the effects of auxin on AsA biosynthesis. Therefore, auxin- and ABA-induced regulation of AsA accumulation is mediated by the SlMAPK8-SlARF4-SlMYB11 module in tomato during fruit development and drought stress responses, shedding light on the roles of phytohormones in regulating AsA accumulation to mediate stress tolerance.


Assuntos
Ácido Abscísico , Ácido Ascórbico , Secas , Ácidos Indolacéticos , Proteínas de Plantas , Solanum lycopersicum , Estresse Fisiológico , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Ácido Ascórbico/biossíntese , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Plants (Basel) ; 11(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35736753

RESUMO

Ascorbic acid, also known as vitamin C, is a vital antioxidant widely found in plants. Plant fruits are rich in ascorbic acid and are the primary source of human intake of ascorbic acid. Ascorbic acid affects fruit ripening and stress resistance and plays an essential regulatory role in fruit development and postharvest storage. The ascorbic acid metabolic pathway in plants has been extensively studied. Ascorbic acid accumulation in fruits can be effectively regulated by genetic engineering technology. The accumulation of ascorbic acid in fruits is regulated by transcription factors, protein interactions, phytohormones, and environmental factors, but the research on the regulatory mechanism is still relatively weak. This paper systematically reviews the regulation mechanism of ascorbic acid metabolism in fruits in recent decades. It provides a rich theoretical basis for an in-depth study of the critical role of ascorbic acid in fruits and the cultivation of fruits rich in ascorbic acid.

13.
Plant Biotechnol J ; 20(6): 1213-1225, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35258157

RESUMO

Postharvest deterioration is among the major challenges for the fruit industry. Regulation of the fruit softening rate is an effective strategy for extending shelf-life and reducing the economic losses due postharvest deterioration. The tomato myoinositol monophosphatase 3 gene SlIMP3, which showed highest expression level in fruit, was expressed and purified. SlIMP3 demonstrated high affinity with the L-Gal 1-P and D-Ins 3-P, and acted as a bifunctional enzyme in the biosynthesis of AsA and myoinositol. Overexpression of SlIMP3 not only improved AsA and myoinositol content, but also increased cell wall thickness, improved fruit firmness, delayed fruit softening, decreased water loss, and extended shelf-life. Overexpression of SlIMP3 also increased uronic acid, rhamnose, xylose, mannose, and galactose content in cell wall of fruit. Treating fruit with myoinositol obtained similar fruit phenotypes of SlIMP3-overexpressed fruit, with increased cell wall thickness and delayed fruit softening. Meanwhile, overexpression of SlIMP3 conferred tomato fruit tolerance to Botrytis cinerea. The function of SlIMP3 in cell wall biogenesis and fruit softening were also verified using another tomato species, Ailsa Craig (AC). Overexpression of SlDHAR in fruit increased AsA content, but did not affect the cell wall thickness or fruit firmness and softening. The results support a critical role for SlIMP3 in AsA biosynthesis and cell wall biogenesis, and provide a new method of delaying tomato fruit softening, and insight into the link between AsA and cell wall metabolism.


Assuntos
Solanum lycopersicum , Ácido Ascórbico , Parede Celular/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Inositol/metabolismo , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Bone ; 153: 116165, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34461284

RESUMO

Previous powerful genome-wide association studies (GWASs) and whole-genome sequencing have identified multiple single-nucleotide polymorphisms (SNPs) located over 69 kb upstream of CTNNB1 at 3p22.1 locus associated with osteoporosis. The CTNNB1 gene encodes ß-catenin that is an integral part of adherens junctions and the primary mediator of the canonical Wnt signaling pathway. The causal variants and underlying molecular mechanisms of the osteoporosis susceptibility locus 3p22.1 remains unknown. Through comprehensive computational analyses, including expression quantitative trait locus (eQTL), high-throughput chromatin interaction (Hi-C), epigenomic and functional annotation, four enhancer SNPs (rs9820407, rs9878224, rs454690 and rs9832204) were prioritized as potential causal SNPs at 3p22.1 for osteoporosis. Rs9820407 displayed the strongest enhancer activity in dual-luciferase assays. Specifically, the minor rs9820407-A can preferentially bind transcription factor FOXC1, elevate the enhancer activity and increase CTNNB1 expression. The architectural protein CTCF was presumably involved in long-range chromatin interaction between rs9820407 and CTNNB1. Our study provided a mechanistic insight into how noncoding enhancer SNP rs9820407 distally regulates CTNNB1 expression and modulates osteoporosis risk.


Assuntos
Estudo de Associação Genômica Ampla , Osteoporose , Alelos , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Predisposição Genética para Doença/genética , Humanos , Osteoporose/genética , Polimorfismo de Nucleotídeo Único/genética , beta Catenina/genética
15.
J Nanosci Nanotechnol ; 20(10): 6168-6172, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32384967

RESUMO

To explore the hydrolyzed properties of nano-SiO2 immobilized porcine pancreatic lipase, the selective hydrolysis of immobilized lipase for glycidyl butyrate was compared with the free enzyme. The hydrolysis selectivity of the immobilized biocatalyst was evaluated and compared with the free enzyme using the enantiomeric excess (ee) of resolving racemic glycidyl butyrate as the indicator. The enantiomeric excess of the immobilized biocatalyst could be increased by 4.5%-10.0% which compared with the free enzyme under every single technological condition. The ee was improved from 84.7% for free enzyme to 91.6% for the immobilized enzyme with 61.2% conversion. Compared with free enzyme, the conversion rate of the immobilized enzyme was increased slightly, but the % enantiomeric excess of the immobilized enzyme was increased greatly.


Assuntos
Butiratos , Lipase , Animais , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Dióxido de Silício , Suínos , Temperatura
16.
J Nanosci Nanotechnol ; 18(8): 5837-5841, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29458650

RESUMO

Nano-SiO2 is an inexpensive material for enzyme immobilization and has been frequently utilized for this purpose. In addition to its low cost, Nano-SiO2 has several advantages when used as a supporting material, including its lack of toxicity and chemical reactivity, allowing easy fixation of enzymes. In this article, Porcine Pancreatic lipase was non-covalently immobilized on Nano-SiO2. The properties of immobilized enzyme were then defined. The optimum pH and temperature for the immobilized PPL for hydrolysis of olive oil were determined as 7.6 and 40-50 °C, respectively. The immobilized enzyme possessed high stability in batch operation; with 73.5% of the initial activity still remaining after 8 times of repeated operation of the immobilized lipase. The immobilized enzyme was more stable than free enzyme and t1/2 was 25 d, while free lipase activity was lost 50% in 2 days. The apparent Km for the immobilized enzyme was significantly smaller than that of the free one.


Assuntos
Enzimas Imobilizadas , Lipase/química , Nanocompostos , Dióxido de Silício , Animais , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Suínos , Temperatura
17.
Nat Prod Commun ; 7(8): 1069-74, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22978231

RESUMO

Identifying small molecules that are neuroprotective against stroke injury will be highly beneficial for treatment therapies. A cell viability assay and gas chromatography-mass spectrometry were used to identify active small molecules in XingNaoJing, which is a well known Chinese medicine prescribed for the effective treatment of stroke. Studies have found that muscone is the active compound that prevents PC12 cell and cortical neuron damage following various injuries. Analysis of apoptosis indicated that muscone inhibited glutamate-induced apoptotic cell death of PC12 cells and cortical neurons. Fas and caspase-8 expression were upregulated following glutamate treatment in cortical neurons, and was markedly attenuated in the presence of muscone. Furthermore, muscone significantly reduced cerebral infarct volume, neurological dysfunction and inhibited cortical neuron apoptosis in middle cerebral artery occluded (MCAO) rats in a dose-dependent manner. Moreover, a significant decrease in Fas and caspase-8 expression in the rat cortex was observed in MCAO rats treated with muscone. Our results demonstrate that muscone may be a small active molecule with neuroprotective properties, and that inhibition of apoptosis and Fas is an important mechanism of neuroprotection by muscone. These findings suggest a potential therapeutic role for muscone in the treatment of stroke.


Assuntos
Cicloparafinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Receptor fas/antagonistas & inibidores , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas/tratamento farmacológico , Masculino , Células PC12 , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...